

四路集成降压型电源管理芯片

LS8P63602

LS8P63602 是一款集成了 2 路 LDO, 2 路 BUCK DC-DC 的电源芯片,采用 QFN42 塑封封装,可在提供大负载电流的同时有效节省 PCB 面积。

LS8P63602 的两路 LDO 最高均可提供 2A 的负载电流,负载电流 2A 时的典型压降为 150mV。两路 BUCK DC-DC均可提供 5A 的负载电流。BUCK部分采用峰值电流模式控制,具有良好的输出电压精度以及瞬态响应性能。2路 DC-DC可以独立工作,也可以合并成1路工作以提供高达 10A 的负载电流。

基于 LS8P63602 的多路集成特性以及 BUCK 的组合输出特性,该器件可应用于服务器、通信电子、测量仪器设备等场景中,为大功率数字逻辑器件、模拟器件以及射频器件等提供稳定可靠、灵活可调、低成本、小体积的供电方案。

产品特性

LDO:

- 输入电压 (V_{in}): 2.2V~5.5V
- 输出电压 (V_{out}): 0.6V ~ 5V
- 2A 负载时的典型压降 (dropout): 150mV
- 输出噪声 (Noise): 83μVrms
- 电源抑制比 (PSRR): 40dB@500kHz
- 集成过流保护,欠压保护和过温保护 DC-DC:
- 输入电压(Vin)范围: 3V~9V(5V VCC 外部偏置); 6V~9V(VCC 内部偏置)
- 输出电压(Vout): 0.65V~0.9*V_{ln}(最大 5.5V)
- 单路稳态输出电流: 5A
- 工作频率: 350kHz、600kHz、800kHz、1000kHz、
- 集成过流保护,过压保护,欠压保护和过温保护
- 峰值电流模式,良好的输出电压精度以及 瞬态响应性能
- 2路 DC-DC 可以单独使用,也可以合成1 路使用
- ESD HBM 1000V

功能框图

LS8P63602 是一款集成了 2 路 LDO, 2 路 BUCK DC-DC 的电源芯片, 两路 LDO 最高均可提供 2A 的负载电流, 两路 BUCK DC-DC 均可提供 5A 的负载电流。其中, 两路 BUCK DC-DC 可配置为并联输出模式,合并为一路 10A 输出,适用于对输出电流要求更高的场合。器件功能框图见图 1~3。

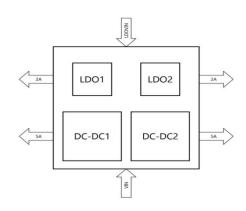


图1 器件功能框图

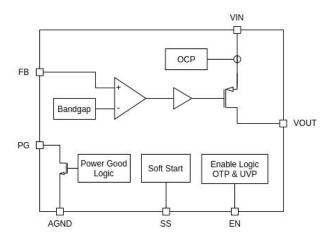


图 2 LDO 功能框图

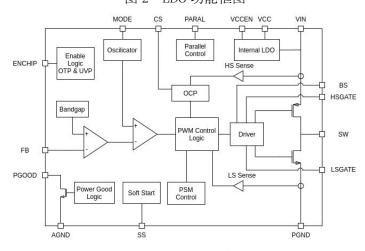


图 3 DCDC 功能框图

典型应用

满足龙芯 CPU 及桥片的电源应用需求, 可配套 2 号系列使用。

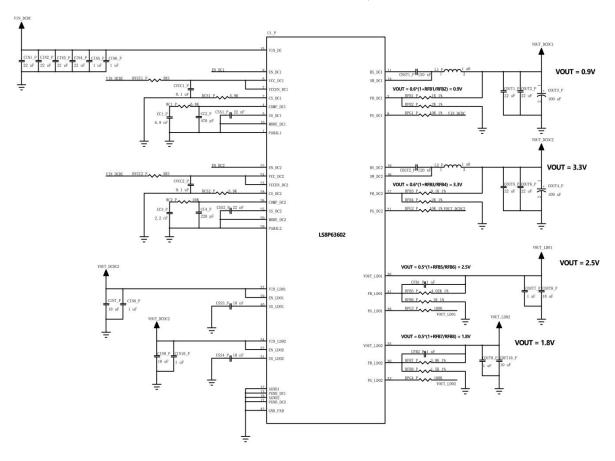


图 4 LS8P63602 典型应用

LDO 部分:

Demo 电路图中输入电容值建议大于等于 $10\,\mu$ F,推荐至少由一个 $10\,\mu$ F 的 MLCC 电容和一个 1μ F 的 MLCC 电容组成。

LDO 的常用输出电压与反馈电阻、前馈电容、输出电容的值参考下表:

输出电压/V	RFB6,RFB8/ kΩ	RFB5,RFB7/ kΩ	前馈电容/nF	输出电容/μF	实际输出电压/V	
1.0		1 (±1%)	1.5	22	1.00	
1.2		1.4 (± 1%)	1.5	22	1.20	
1.5	1 (+1%)	2 (±1%)	1.5	22	1.50	
1.8	1 (± 1%)	2.61 (± 1%)	1.5	22	1.80	
2.5		4 (±1%)	1	22	2.50	
3.3		5.6 (± 1%)	1	22	3.30	

LDO 典型应用如下图:

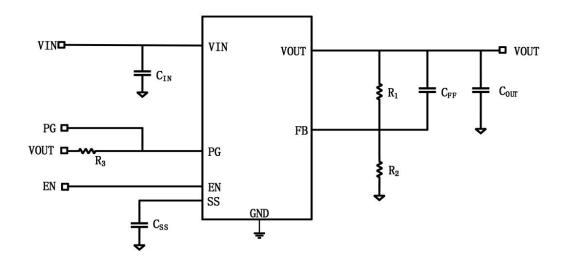


图 5 LDO 典型应用

表1 元件取值范围

	LDO		
	MIN	TYP	MAX
输入电容(C _{IN})		10 μ F	
输出电容 (C _{OUT})	10 μ F	22 μ F	68 µ F
软启动电容 (Css)		10nF	
PG 上拉电阻 (R ₃)	10Κ Ω	100Κ Ω	1M Ω

LDO 的损耗功率限制:

由于 LDO 是一种线性稳压器,因此自身存在较大的功率损耗,尤其是在输入电压 VIN 较高而输出电压 VOUT 较低时,功率损耗可能达到 80%;且由于 LS8P63602 的两路 LDO 的功率 MOS 在芯片上的距离较近,容易形成局部高温区域,因此为了保证 LDO 不会过热而触发过温保护,需要对 LDO 自身的损耗功率进行限制。推荐两个 LDO 在 25℃时的合并功率损耗不超过 2W,功率损耗可以在两路 LDO 间进行分配。

DCDC 部分:

DC-DC 输入电容的选取:

输入电容容值的选取应当遵循输入电容的电压纹波为输入电压 VIN 的 1%左右。可根据下式计算输入电容所需的容值:

$$C_{IN} = \frac{I_O \times D \times (1 - D)}{f \times \left[V_{ripple} - ESR \times I_O \times \left(1 + \frac{r}{2} \right) \right]}$$

其中, IO 为所需最大输出电流, D 为占空比, D=VOUT/VIN, f 为 DC-DC 的工作频率, Vripple 为输入电容的纹波电压, ESR 为输入电容的等效串联电阻, r 为纹波率,

$$r = \frac{V_O \times (1 - D)}{I_O \times L \times f}$$

 V_0 为输出电压,L为使用的电感大小。由于 63602 中的两路 DC-DC 共用一个输入引脚,因此上述计算得到的 C_{IN} 在使用时应当乘 2。辅助电容主要是靠近芯片的去耦电容,可以根据实际需要灵活选择。

DC-DC 输出电容的选取:

输出电容的选取有两个原则: 1) 电容的大小满足负载跳变的下垂电压与超调电压的要求; 2) 电容的大小满足输出纹波的需求。

对于1), 可根据下式计算所需容值:

$$C_O \ge \frac{3 \times \Delta I_O}{\Delta V_{drop} \times f}$$

$$C_O \ge \frac{L \times {I_O}^2}{2 \times V_O \times \Delta V_{overs\,hoot}}$$

其中, ΔV_{drop} 为负载由轻载跳变到重载时的下垂电压, $\Delta V_{overshoot}$ 为负载由重载跳变到轻载时的超调电压, ΔI_O 为跳变的电流大小, V_o 为输出电压, I_o 为所需最大直流输出电流。对于 2),可根据下式计算所需容值:

$$C_O \ge \frac{r \times I_O}{8 \times V_{ripple} \times f}$$
$$V_{ripple} = ESR \times r \times I_O$$

其中, V_{ripple} 为最大可容忍的输出纹波。最终使用的电容大小取上述三个结果中的最大值。 详见附件 B。

DC-DC 推荐的反馈电阻阻值及对应的输出电压:

输出电压计算公式如下:

$$V_{OUT} = 0.6V \times (R_{FB1}/R_{FB2}+1)$$

常用输出电压的反馈电阻值请参照下表:

输出电压/V	RFB2、RFB4/kΩ	RFB1、RFB3/kΩ	实际输出电压/V
1.0	15 (± 1%)	10 (± 1%)	1.00
1.2	15 (± 1%)	15 (± 1%)	1.20
1.8	15 (± 1%)	30 (±1%)	1.80
2.5	15 (± 1%)	47.5 (± 1%)	2.50
3.3	13.7 (± 1%)	61.9 (± 1%)	3.31
3.8	13.7 (± 1%)	73.2 (± 1%)	3.81
5.0	15 (± 1%)	110 (± 1%)	5.00

DC-DC 推荐的输入输出电压及频率、电感值选择:

输入电压/V	输出电压/V	频率模式/kHz	电感值/μH
	1.0	350	
	1.2	350	
	1.8	600	
9	2.5	600/800	1.0
	3.3	600/800/1000	
	3.8	600/800/1000	
	5.0	600/800/1000	
	1.0	600	
5	1.2	600	1.0
	1.8	600/800	1.0
	3.3	600/800/1000	

如果遇到上表中未出现的输出电压,则可根据实际需要对频率进行调整,推荐输出电压大于等于 1.5V 时开始考虑使用频率 600KHz,如不确定最佳频率,除 1V 和 1.2V 工况以外,在输出 纹波允许的情况下均优先推荐使用频率 600KHz。

DC-DC 限流电阻的选择:

DC-DC 的限流电流与输出电流的比例约为 20 μ A/A, 但实际芯片可能会有最大 20%的漂移, 因此在选取限流电阻时应当留出 40%以上的限流裕量,推荐为 50%。详见附件 C。

DC-DC 并联使用的注意事项:

LS8P63602 的双路工作设计是主从结构,即双路工作时,BUCK1 是主控制器,而BUCK2 为从控制器,此时BUCK1 将会接管时序控制和输出电压控制,而BUCK2 的电路部分仅负责调控第二路的占空比,相关的时钟信号全部由BUCK1 产生。

双路并联工作除了要求 PARAL 引脚接高电平以外,还需要注意将 BUCK2 的反馈电阻全部 去掉,将 BUCK1 和 BUCK2 的 VOUT 以及 FB 引脚相连,BUCK1 与 BUCK2 的频率设置需要一致。 如果外部元件偏差较小,两相可以被动均流,无需额外连接;如果外部元件偏差较大则 COMP 引脚需要相联以进行两相主动均流。

此外,BUCK2 在双路工作时,除了反馈元件以外,其他元件和单路工作没有区别,补偿电容、软启动电容等均需要按照实际设计,并且需要将 EN 正确使能。

DC-DC 典型应用如下图:

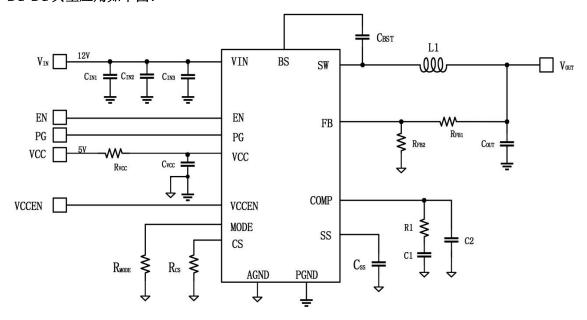


图 6 DC-DC 典型应用

推荐使用 9V 转 $0.8V \sim 5V$ 单路最大稳态工作电流 5A, 5V 转 $0.65V \sim 3.3V$ 单路最大稳态工作电流 5A。当输入为 9V, VOUT 低于 1.5V 时建议选用 350kHz 频率, 其他输出建议优先选用 600kHz 频率。

	DC-DC		
	MIN	TYP	MAX
输入电容(C _{IN})		120 µ F	
输出电容(C _{OUT})	100 μ F		
软启动电容 (C _{ss})		22nF	
PG 上拉电阻	1K Ω	10K Ω	1M Ω
限流电阻 (R _{CS})	2Κ Ω		120Κ Ω
模式选择电阻 (R _{MODE})			90Κ Ω
功率电感(L1)	0.56 μ Η	1μΗ	1.5 μ Η
自举电容(C _{BST})	100nF	220nF	470nF
内置 LDO 输出电容 (Cvcc)		1 μ F	4.7 μ F
外置 VCC 保护电阻(R _{VCC})		3Ω	

表 2 元件取值范围

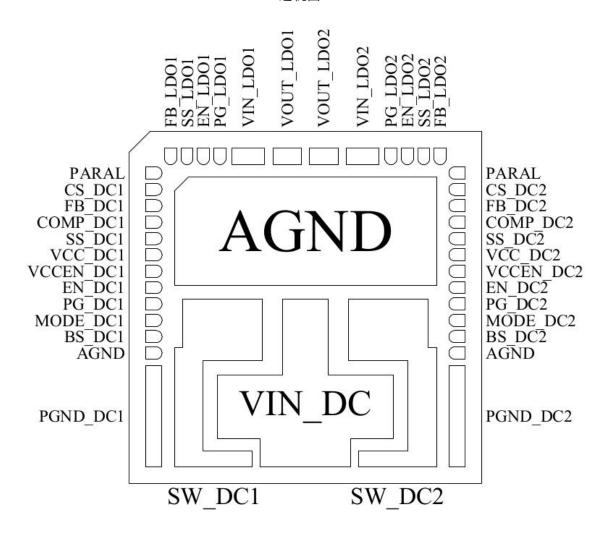
电源芯片 DC-DC 使用注意事项:

- a)使用外置 VCC 时,启动过程 VCC 优于 VIN 先上电,关断过程 VCC 后于 VIN 下电; VIN 为 5V 时可直接将 VIN 与 VCC 连接同时上电;
 - b) EN 可以由 VIN 分压得到, EN 稳态电压范围大于 1.5V 小于 5V;
 - c) COMP 引脚的补偿参数需要根据实际应用情况进行调整;

- d)输入输出电容建议选择 low ESR 的固态电解电容、固态钽电容、OS-CON 或 POSCAP 等;
- e)电源输入输出和PGND网络PCB走线尽量宽,接地点建议多打过孔;电感和电容要求与芯片同层放置且靠近输出管脚,输出电容接地端多打过孔;DCDC开关环路尽量形成最短通路;COMP的补偿电路器件要求与芯片同层放置。

订购信息

芯片型号	封装	工作温度 (T _J)
LS8P63602	塑封	-40°C~+125°C



引脚配置

LS8P63602

(42 LD 8×8 QFN)

透视图

引脚说明

管脚	名称	说明
1.20	DADAI	DC-DC 并联输出控制。接高电平(大于 2V)时两路 DC-DC 并联输出;接
1,29 PARAL	PARAL	低电平或悬空时,单路输出,推荐单路输出时此引脚接地。
2	CS_DC1	DC-DCI 的限流。接一个电阻到 GND 来设置限流触发点。
3	FB_DC1	DC-DCI 的输出电压反馈。
4	COMP_DC1	DC-DCI 的外部补偿。
5	SS_DC1	接一个外部电容来调节 DC-DCI 输出软启动时间。
	VCC DC1	DC-DCI 内部 5V LDO 输出。也可以外接一个 5V 电压为内部驱动和控制电
6	VCC_DC1	路提供电源。
7	VCCEN_DC1	VCCI 使能脚。高电平时外部电压源输入;低电平或悬空时内部 VCC 输出,

		推荐使用内部 VCC 时此引脚接地。
8	EN_DC1	DC-DCI 使能。
9	PG_DC1	DC-DCI 电源正常信号。
10	MODE_DC1	DC-DCI 工作模式选择。编程 MOD 来选择工作频率。
11	BS_DC1	DC-DCI 自举。
12,18	AGND	模拟地。控制电路的参考地。
13,17	PGND	DC-DC 功率地。
14	SW_DC1	DC-DCI 开关输出。
15	VIN_DC	DC-DC1/2 供电源。
16	SW_DC2	DC-DC2 开关输出。
19	BS_DC2	DC-DC2 自举。
20	MODE_DC2	DC-DC2 工作模式选择。编程 MOD 来选择工作频率。
21	PG_DC2	DC-DC2 电源正常信号。
22	EN_DC2	DC-DC2 使能。
02	MCCEN DC2	VCC2 使能脚。高电平时外部电压源输入;低电平或悬空时内部 VCC 输出,
23	VCCEN_DC2	推荐使用内部 VCC 时此引脚接地。
24	VCC_DC2	DC-DC2 内部 5V LDO 输出。也可以外接一个 5V 电压为内部驱动和控制电
24	VGC_DG2	路提供电源。
25	SS_DC2	接一个外部电容来调节 DC-DC2 输出软启动时间。
26	COMP_DC2	DC-DC2 的外部补偿。
27	FB_DC2	DC-DC2 的输出电压反馈。
28	CS_DC2	DC-DC2 的限流。接一个电阻到 GND 来设置限流触发点。
30	FB_LDO2	LDO2 输出电压反馈。
31	SS_LDO2	LDO2 电流软启动电容引脚。
32	EN_LDO2	LDO2 使能。
33	PG_LDO2	LDO2 电源正常信号。
34	VIN_LDO2	LD02 输入电源电压。
35	VOUT_LDO2	LD02 输出电压。
36	VOUT_LDO1	LDOI 输出电压。
37	VIN_LDO1	LDOI 输入电源电压。
38	PG_LD01	LDO1 电源正常信号。
39	EN_LDO1	LDOI 使能。
40	SS_LD01	LDO1 电流软启动电容引脚。
41	FB_LD01	LDOI 输出电压反馈。
42	AGND	模拟地。控制电路的参考地。

注:控制引脚电平均不能超过5.5V。

绝对最大额定值

LDO 输入电压(V _{IN_LDOx})	+1.6V~+8.0V
LDO 输出电压(V _{OUT_LDOx})	+0.6V~+5.5V
LDO 最大输出电流(I _{OUT_LDOx})	3.6A
DCDC 输入电压(V _{IN_DCx})	+3V~+12V
DCDC 输出电压(V _{OUT_DCx})	+0.65V~+5.5V
外部 VCC 输入电压(V _{CC_DCX})	+4.5V~+5.5V
DCDC 最大输出电流(Iour DCx)	6.5A

推荐工作条件

LDO 输入电压(V _{IN LDOx})	+2.5V~+5.5V
LDO 输出电压(V _{OUT_LDOx})	
LDO 最大输出电流(I _{OUT_LDOx})	2A
DCDC 输入电压(V _{IN_DCx})	
DCDC 输出电压(V _{OUT_DCx})	+0.8V~+5.0V
DCDC 最大输出电流(I _{OUT_DCx})	5A
环境温度(T _J)	

温度信息*

热阻(典型)θ _{JA}	42°C/W
	12°C/W
最高工作结温(T _J)	+140°C
储存温度范围	65°C~+150°C

*注: DC-DC 的功率 MOS 在承载大负载电流时同样会有较多的热量产生,结合 LDO 模块的损耗,每一片63602 芯片的最大功率损耗需要控制在 3W 左右,其中 DC-DC 的功率 MOS 在两路 5A 负载的情况下总损耗约为 1W 左右,其余功率损耗可分配给 LDO。

电气特性

(除非另有说明外,所有参数都是在以下指定条件下确定:-40 $\mathbb{C} \leq T_{j} \leq 125$ \mathbb{C} , $I_{LOAD}=0$ A,应用必须遵循封装的散热指南,以确定最坏情况下的结温温度。)

LDO:

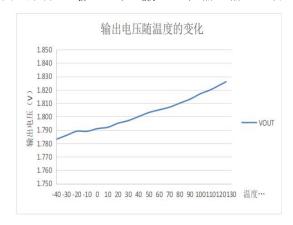
参数	符号	条件	最小值	典型值	最大值	单位
直流参数						
		V_{OUT} =1.8V; V_{IN} =2.2V; I_{LOAD} =0A	/	0.5	/	
松山市厂特度	,	V _{OUT} =1.8V; 2.2V <v<sub>IN<3.6V; 0A<i<sub>LOAD<2A</i<sub></v<sub>	-1.0	/	1.0	0/
输出电压精度	/	V_{OUT} =2.5V; V_{IN} =2.9V; I_{LOAD} =0A	/	0.5	/	%
		V _{OUT} =2.5V; 2.9V <v<sub>IN<5.5V; 0A<i<sub>LOAD<2A</i<sub></v<sub>	-1.0	/	1.0	
外州油斯安	Δ V _{OUT} / Δ V _{IN}	V_{OUT} +0.4V< V_{IN} <3.6V; V_{OUT} =1.8V	/	0.1	0.4	0/
线性调整率		V_{OUT} +0.4V< V_{IN} <5.5V; V_{OUT} =2.5V	/	0.1	0.8	%
负载调整率	Δ V _{OUT} / Δ I _{OUT}	0A <i<sub>LOAD<2A</i<sub>	-0.8	/	0.8	%
压差电压	V_{DROP}	I _{LOAD} =2A; V _{OUT} =2.5V	-	220	300	mV
巨健由压	17	$T_J = 0$ °C ~ 70 °C	493	500	507	mV
反馈电压	$ m V_{FB}$	$T_J = -40 ^{\circ}\text{C} \sim +125 ^{\circ}\text{C}$	485		515	mV
静态电流	I_Q	$I_{LOAD}=0A$; 2.2V< V_{IN} <5.5V	/	2	5	mA
子帐市法		V_{IN} =2.2 V	/	1	/	
关断电流 	$I_{ m SHDN}$	V _{IN} =5.5V	/	1	10	μΑ
短路电流	I_{SC}	V _{OUT} =0V; 2.2V <v<sub>IN<5.5V</v<sub>	/	3.2	/	A

过热保护温度	$T_{ ext{SHDN}}$	V _{OUT} +0.4V <v<sub>IN<6V</v<sub>	/	140	/	$^{\circ}$
过热迟滞温度	ΔT_{SHDN}	V _{OUT} +0.4V <v<sub>IN<6V</v<sub>	/	25	/	$^{\circ}$
工作温度范围	/	/	-40	25	125	°C
交流参数						
电源纹波	PSRR	f=100kHz; I _{LOAD} =2A; V _{IN} =2.2V	/	40	/	dB
抑制比*	POUV	f=1kHz; I_{LOAD} =2A; V_{IN} =2.2V	/	60	/	dD d
输出噪声电压*	e_n	I _{LOAD} =10mA; BW=300Hz <f<300khz< td=""><td>/</td><td>83</td><td>/</td><td>μV_{RMS}</td></f<300khz<>	/	83	/	μV_{RMS}
使能引脚参数			1			
开启阈值	V_{EN}	2.2V <v<sub>IN<5.5V</v<sub>	0.4	0.7	0.9	V
迟滞电压	V _{HYS(EN)}	2.2V <v<sub>IN<6V 100</v<sub>		200	500	mV
漏电电流	I_{EN}	$V_{IN}=5.5V$; $V_{EN}=3V$	/	/	5	μΑ
PG 引脚参数						
PG 阈值	$V_{\text{IT}(\mathrm{PG})}$	V_{FB} =420mV ~ 480mV	84	92	96	%V _{OUT}
PG 迟滯	$V_{\rm HYS(PG)}$	V_{FB} =420mV ~ 480mV	1	4	15	%
PG 输出低电平	$V_{PG_{low}}$	$V_{IN}=2.2V$	80	100	110	mV
PG 漏电电流	I_{PG_lkg}	V _{IN} =2.2V	/	0.05	5	μА
软启动参数						
软启动电流	I _{SS}	/	-3.5	-5	-8.5	μΑ

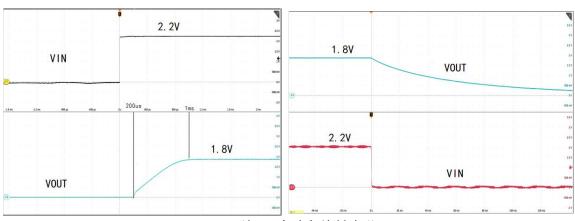
DC-DC:

参数	符号	条件	最小值	典型值	最大值	单位
电源电压	$ m V_{IN}$		3 5		9	V
输出电压	V_{OUT}		0.65	1	5.5	V
外部 VCC 电压	VCC_EXT		4.8	5	5.2	V
最大输出电流	IOUT_MAX		-	-	5	A
使能电压	V_{EN}		1.1	-	5	V
电源电流						
关断电流	I_{SD}	$V_{EN} = 0$	-	-	30	μΑ
静态电流	I_{IN}	$V_{\rm EN}~=~2V,~V_{\rm FB}=~0.6V$	-	3	5	mA
MOSFET						
开关漏电	SW_{LKG_HS}	$V_{\rm EN}$ = OV, $V_{\rm SW}$ = OV		0	10	μΑ
八天/湘电	SW_{LKG_LS}	$V_{EN} = 0V$, $V_{SW} = 9V$		0	30	μΑ
开启电阻 (HS)	R _{DS_ON_HS}	$V_{EN} = 2V @ 25^{\circ}C$		10		$m\Omega$
开启电阻 (LS)	R _{DS_ON_LS}	$V_{EN} = 2V @ 25^{\circ}C$		10		mΩ
限流						
限流比例	I_{CS}/I_{OUT}	$I_{OUT} > 2A$	17	20	23	μ Α/Α
开关频率	'		•		1	•
		MODE=GND, I _{OUT} =0A	420	600	780	kHz
开关频率	f_{sw}	MODE=30K, I _{OUT} =0A	560	800	1040	kHz
		MODE=60K, I _{OUT} =0A	700	1000	1300	kHz

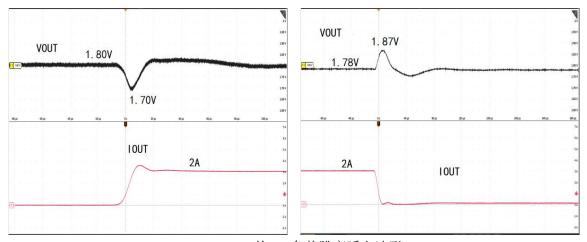
		MODE=VCC, I _{OUT} =0A	270	350	460	kHz
最小开启时间*	T _{ON_MIN}	$V_{\rm FB} = 600 {\rm mV}$			150	ns
最小关闭时间*	T _{OFF_MIN}	$V_{\rm FB} = 600 {\rm mV}$			80	ns
过压保护(OVP)		?)				
OVP 阈值	V _{OVP}		120%	125%	130%	Vref
UVP 阈值	V _{UVP}		70%	75%	80%	Vref
反馈电压和软启动	· 动		'			
	3.7	$T_J = 0$ °C to +70°C	593	600	607	mV
反馈电压	V _{REF}	$T_J = -40$ °C to $+125$ °C	585		615	mV
软启动电流	I_{ss}	$V_{EN}=2V$	7	10	13	μА
软启动时间	t _{ss}	$C_{SS} = 22 \text{nF}, T_J = 25 ^{\circ}\text{C}$	0.75	1	1.25	ms
误差放大器	,					•
反馈电流	I_{FB}	$V_{FB} = REF$		50	100	nA
使能和 UVLO						'
使能阈值 (上	7/11.1		1.0	1.0	1.0	17
升)	VIH _{EN}		1.0	1.2	1.6	V
使能迟滞	V _{EN-HYS}			100	150	mV
使能电流	I _{EN}	$V_{\rm EN}$ =2V		15	30	μΑ
V _{IN} UVLO			·			
VIN 欠压锁定阈 值(上升)	VIN _{Vth_Rise}	$V_{CC} = 5.0V$	2.8	3	3.4	V
VIN 欠压锁定阈 值(下降)	VIN _{Vth_Fall}	$V_{CC} = 5.0V$	2.6	2.9	3.2	V
VCC 稳压器	I					
VCC 欠压锁定阈 值(上升)	VCC _{Vth_Rise}		2.4	2.9	3.2	V
VCC 欠压锁定阈 值(下降)	VCC _{vth_Fall}		2.4	2.7	3	V
VCC 校准电压	V _{CC}		4.7	5	5.3	V
POWER GOOD	<u> </u>		l		1	
PG_DCx 阈值	PG _{Vth_Hi_Rise}	-		4.95	5.5	V
过温保护			1	•	•	
保护温度	结温			140		$^{\circ}\!\mathbb{C}$
过温保护迟滞				20		$^{\circ}\!\mathbb{C}$
-						

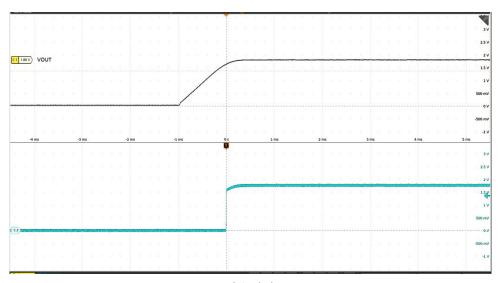

注:表中标注*的项为设计保证。



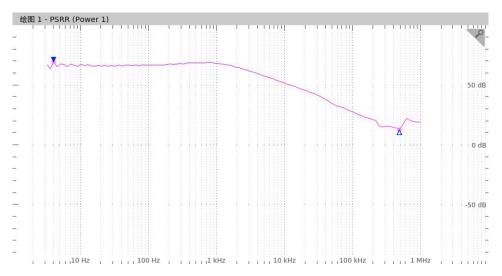

典型工作性能

LDO:


测试条件: V_{IN}=2.2V, V_{OUT}=1.8V, 输入输出电容 10 μ F, 温度 25 °C, 软启动电容 10 n F。

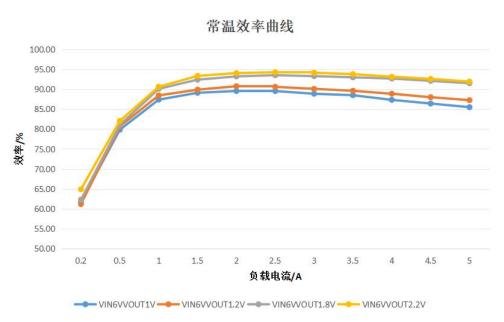


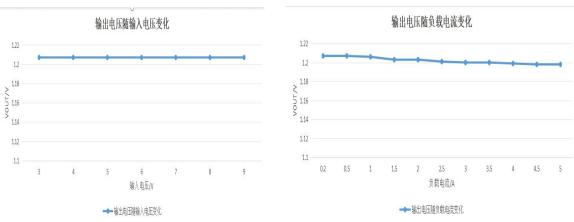
VOUT 随 EN 启动和关断波形

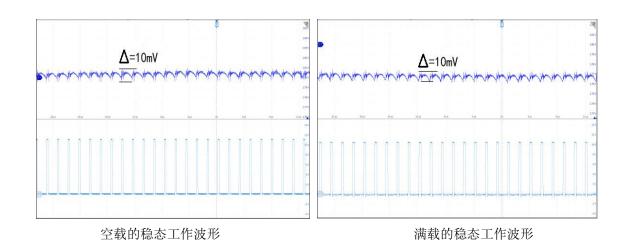


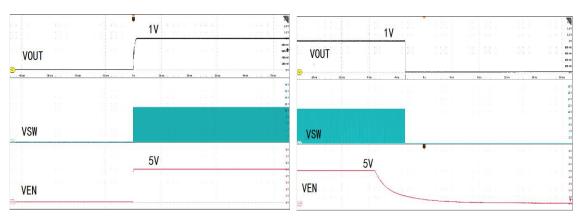
VOUT=1.8V的 2A负载跳变瞬态波形

瞬态响应

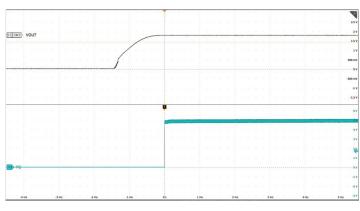


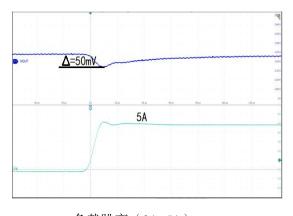

PSRR 曲线

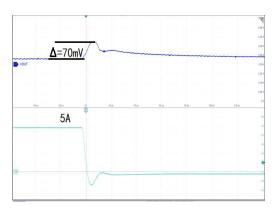



DC-DC:

测试条件: VIN=6V, 频率 600KHz, 电感 luH, 输出电容 470 μF MLCC, 软启动电容 22nF, 温度 25℃。






随 EN 上电启动及下电关断的 SW 输出波形

瞬态响应

负载跳变 (0A~5A)

负载跳变(5A~0A)

功能描述

LDO:

输入电压

输入电压 VIN 允许的最大误差范围为设计值 ±10%。为达到最佳性能和电源抑制比,输入电压需要保证大于输出电压与最大负载时的压差之和。

使能

EN 不可悬空,如果不使用独立使能或随 VIN 上电启动时请将 EN 引脚使用 10K Ω 电阻上拉到 VIN。EN 引脚内部有 1M Ω 下拉电阻。不推荐使用 VIN 分压控制使能。

电源状态

PG 表征 LDO 的工作状态,当 PG 为高时,表示 VOUT 输出正常。PG 需要一个外置的上拉电阻接到一个高电平上,通常使用VIN或 VOUT。在以下几种情况 PG 状态无效:输出电压低于期望输出电压 80%,限流,输入电压过低,过温保护,芯片处于关闭状态。

软启动

软启动可以有效降低 LDO 上电/使能到 VOUT 稳定时的浪涌电压及电流。同时,通 过调整外部软启动电容值可以控制 LDO 在 上电/使能时输出电压 VOUT 的稳定时间。默 认状态下推荐使用至少 10nF 电容以达到 1ms 左右的软启动时间,若需要更长的软启动时 间,则可以相应加大软启动电容值。

输出电压选择

LDO 的内置基准源电压为 500mV,通过 反馈电阻的选择可以得到预定的输出电压。 常用输出电压的参数选择可以参考 LDO 典型应用相关描述。

$$V_{OUT} = 0.5V \times (R_1/R_2+1)$$

输出电容选择

VOUT和GND之间必须跨接一个不小于 10 μF的电容,电容介质推荐使用 X7R或 X5R,同时保证 PCB 走线尽量短。为达到最佳性能,容值选取可以参考 LDO 典型应用相关描述。

输入电容

正常工作时, VIN 和 GND 之间需跨接一个电容,容值大于等于 $10 \, \mu \, F$,电容介质推荐使用 X7R 或 X5R,同时保证 PCB 走线尽量短,也可加入小容量去耦电容用于滤除高频干扰。

过流保护

当输出电流大于 4A (典型值)时,LDO 启动过流保护。当芯片启动过流保护时,芯片将开始关断功率管以保护负载器件。当输出电流回落到正常范围时,过流保护状态解除,输出电压恢复正常。

过温保护

当芯片温度超过 160℃(典型值)时, LDO 的输出将关断,直至温度降至 130℃(典型值)时,LDO 重新启动。如果此时芯片工作的环境温度仍然较高或芯片损耗功率仍

然过大,则过温保护可能频繁启动导致芯片 输出出现振荡。

DCDC:

PWM 控制

芯片 DC-DC 部分是降压开关转换器 (DC-DC)。它采用峰值电流模 PWM 控制来保证输出电压精度并实现快速瞬态响应。环路内部具有误差放大器,通过 COMP 引脚的外部 typell 补偿元件实现 DC-DC 环路稳定。芯片内置了自适应的斜坡补偿电路,在使用合适的电感值和频率时可以保证芯片不发生次谐波振荡。

当 DC-DC 输出电流高时,电感电流始终大于零,工作在连续导通模式(CCM)。 当输出电流低时,DC-DC 将直接工作在强制连续导通模式(FCCM)。在连续导通模式下, 开关频率固定,因此在整个负载范围内输出纹波几乎一致。

当输入电压较大且输出电压过低或频率过高时,由于芯片控制环路最小导通时间的限制,此时芯片将进入BURST突发导通模式,芯片将会自动跳过部分导通周期。此时芯片输出纹波会相应增大。例如,在输入电压为9V,输出电压为0.65V,工作频率为350KHz时,芯片将进入BURST模式。当输出负载电流增大时,芯片将自动退出BURST工作模式进入CCM工作模式。推荐非必要情况下不要使用BURST模式以避免空载纹波增大造成问题。

MOD 选择

DC-DC 的开关频率可通过外部单电阻进行选择,可选的频率有:350KHz,600KHz,800KHz和1000KHz。使用时请根据实际需要选择合适的工作频率,默认情况下推荐优先使用600KHz。

软启动(DC-DC)

DC-DC 内部软启动时间非常短(几乎没有),可通过在 SS_DCx 到地接电容来实现较长的软启动时间并减小启动时间内电感电流的过冲以避免发生电感饱和和损坏等问题。推荐默认情况下使用不小于 1ms 的软启动时间。

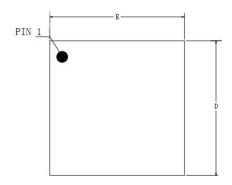
电流检测和过流保护

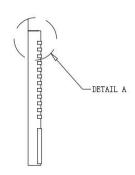
DC-DC 有一个片上电流检测和一个可调正向限流值。限流值与限流电阻的取值可参考文档附表。LS8P63602 的片上电流保护是一个软电路保护,当开始进入过流保护状态时,芯片将会自动降低输出电压值,并限制输出电流值,但芯片对输出电流的限制不会触发芯片停止工作。当输出过流状态解除时,芯片输出电压将恢复正常。

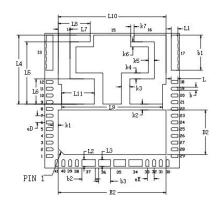
过压、欠压保护

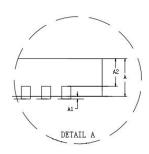
DC-DC的FB_DCx 电压超过内部参考电压的 116%,会进入锁存过压保护(OVP)模式。进入过压保护模式时,芯片将关闭 PWM输出,直至输出电压恢复正常。DC-DC的FB DCx 电压低于内部参考电压的 86%,会

进入锁存欠压保护(OVP)模式,此时芯片 PG引脚电压将被拉低,但输出电压在外部 错误解除前将保持当前值。

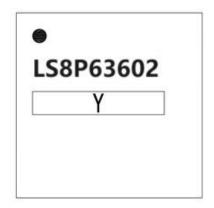

过温保护


当芯片温度超过140℃时,DC-DC启动过温保护机制,当温度回落到110℃时,DC-DC重新工作。如果此时芯片工作的环境温度仍然较高或芯片损耗功率仍然过大,则过温保护可能频繁启动导致芯片输出出现振荡。


20



封装形式图、封装尺寸


单位为 mm

尺寸	MIN	NOM	MAX	尺寸	MIN	NOM	MAX
Е	7.900	8.000	8.100	L5	3.650	3.700	3.750
D	7.900	8.000	8.100	L6	1.450	1.500	1.550
еE	_	0.400	-	L7	0.650	0.700	0.750
eD	_	0.400	-	L8	1.850	1.900	1.950
A	0.700	0.750	0.800	L9	5.950	6.000	6.050
A1	0.000	_	0.050	L10	6.350	6.400	6.450
A2	-	0.550	_	L11	1.900	1.950	2.000
b	0.130	0.180	0.230	k1	-	0.296	-
L	0.350	0.400	0.450	k2	_	0.350	_
b1	1.590	2.090	2.590	k3	_	0.500	_
L1	0.342	0.392	0.442	k4	-	0.350	-
b2	0.745	0.795	0.845	k5	-	0.350	-
L2	0.350	0.400	0.450	k6	_	0.300	_
b3	0.645	0.695	0.745	k7	_	0.200	_
L3	0.350	0.400	0.450	E2	6.350	6.400	6.450
L4	4.050	4.100	4.150	D2	2.600	2.650	2.700

21

产品标识

每一器件应标志下列内容:

- a) 定位点: ●;
- b) 第一行: 器件型号 "LS8P63602";
- c) 第二行: Y 为厂商信息和识别号。

使用操作规程及注意事项

器件必须采取防静电措施进行操作。取用芯片时应佩戴防静电手套,防止人体电荷对器件的静电冲击,损坏器件。将芯片插入电路板上的底座时以及将芯片从电路板上的底座取出时,应注意施力方向以确保芯片管脚均匀受力。不要因为用力过猛,损坏芯片管脚,导致无法使用。

推荐下列操作措施:

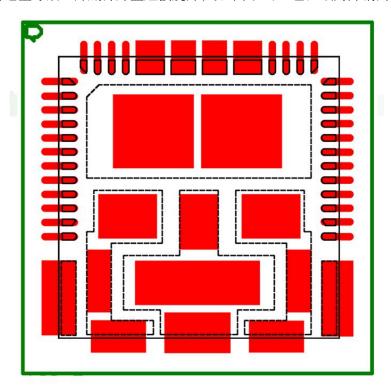
- a) 器件应在防静电的工作台上操作,或带指套操作;
- b) 试验设备和器具应接地;
- c) 不能触摸器件引线;
- d)器件应存放在ESD防护托盘和防静电袋中;
- e) 器件湿度敏感等级为 MSL3;
- f) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物;
- g) 相对湿度尽可能保持在 45%~75%。

运输与储存

存储环境推荐温度: -65℃~+150℃。

使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保芯片不要与外物发生碰撞。

开箱与检查


开箱使用芯片时,请注意观察芯片管壳上的产品标识。确定产品标识清晰,无污迹,无 擦痕。同时,注意检查芯片管壳及引脚。确定管壳无损坏,无伤痕,管脚整齐,无缺失,无 变形。

附件 A 焊接参考说明

一、回流焊

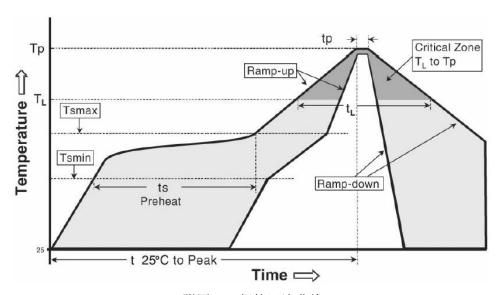
1) 开钢网时建议对面积较大的焊盘(如 DC-DC 电源输入、输出管脚, EPAD 等)适当进行分割,避免锡膏过量导致芯片底部焊盘短接烧片,如下图1(红色区域为开钢网区域)。

附图 A.1 一种开钢网方案示例

2)回流焊温度曲线可参考常用的无铅工艺回流焊温度曲线(如下图和下表)。

附表 A.1 无铅工艺的封装回流最大温度表

Package Thickness	Volume mm ³ < 350	Volume mm ³ 350 – 2000	Volume $mm^3 > 2000$
< 1.6 mm	260 ° C *	260 ° C *	260 ° C *
1.6 mm - 2.5 mm	260 ° C *	250 ° C *	245 ° C *
> 2.5 mm	250 ° C *	245 ° C *	245 ° C *


^{*} Tolerance: The device man μ Facturer/supplier shall assure process compatibility up to and including the stated classification temperature at the rated MSL level

附表 A.2 回流焊接温度分类表

Prof	Pb-Free Assembly	
Average ramp-	3° C/second max.	
	Temperature Min (Tsmin)	150 ° C
Preheat	Temperature Max (Tsmax)	200 ° C
	Time (Tsmin to Tsmax) (ts)	60–180 seconds

Time maintained above	Temperature (TL)	217 ° C
	Time (tL)	60–150 seconds
Peak Te	245° C	
Time within 5° C of a	20-40 seconds	
Ramp	6 ° C/second max.	
Time 25° C	8 minutes max.	

附图 A.2 焊接回流曲线

二、手动焊接(热风枪焊接)

- 1、芯片首次焊接时可适当用烙铁给小管脚以及 PCB 焊盘手动适量上锡以增加焊接成功率, 焊盘锡量不宜过多以免芯片底部焊盘短路;
- 2、用热风枪加热时温度应控制在 360℃以下并尽量控制加热时间以免温度过高导致芯片或 PCB 焊盘损坏;
- 3、焊锡融化后可用镊子轻拨芯片辅助其回正位置,此时若芯片不平说明锡量过多,可尝试 轻压芯片中心挤出多余的焊锡;
- 4、稍冷却后可用烙铁对芯片四周管脚进行拖锡处理以去除可能存在的锡珠和连锡现象,但 要避免反复拖锡以免损伤 PCB 焊盘;
- 5、焊接完成后先用万用表二极管档位测试芯片各管脚,确认没有短路、虚焊问题后再进行上电测试。

附件 B BUCK 常用工况的输入输出电容值表

表 B-1 输出电流的输入输出电容值表

输入电压	输出电压	电感值/	频率/kHz	输出电流	输入电容/μ	输出电容/	
/V	/V	μН		/A	F	μF	
	1		350		100	330	
	1.2		350		100	330	
9	1.8	1	600		120	330	
9	2.5	2.5	1	600		150	470
	3.3		600	5	180	470	
	5		600	3	220	470	
	1		600		100	330	
5	1.2	1	600		100	330	
3	1.8		600		120	330	
	3.3		600		150	470	

注:

- 1、表中的输出电容计算原则为对应负载电流跳变瞬间 Vdrop 约 50mV;
- 2、表中的输入电容计算原则为输入电压纹波近似为输入电压的 1%左右, ESR 为 30m Ω左右;
- 3、表中使用的频率为 350kHz 和 600kHz, 800kHz 和 1000kHz 情况可减小电容值;
- 4、表中均为 5A 满负载的情况,如果实际负载电流不足 5A 可以近似等比例减小电容值。

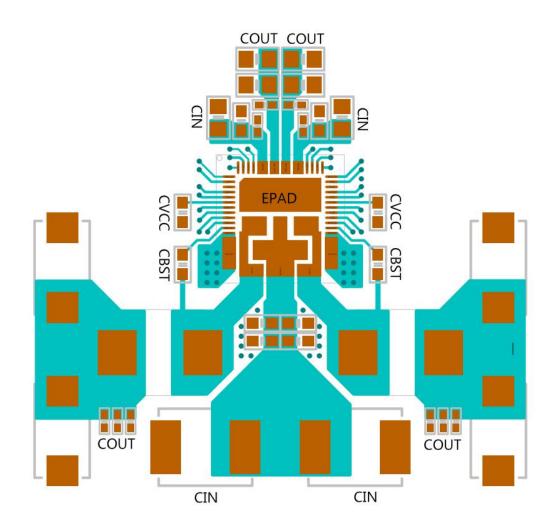

附件 C BUCK 输出限流电阻对照表

表 C-1 输出限流电阻对照表

输入电压/V	输出电压/V	限流电阻值/kΩ		
制入电压/V	∥ 11 円/上/ 1	350kHz	600kHz~1000kHz	
	1.0	6.04	_	
	1.2	5.9	_	
9	1.8	5.6	6.04	
9	2.5	5.1	5.6	
	3.3	4.7	5.1	
	5.0	4.3	4.7	
5	0.8	5.9	6.04	
	1.0	5.6	5.76	
	1.2	5.36	5.6	
	1.8	4.99	5.36	
	2.5	_	5.36	
	3.3	-	4.75	

附件 D PCB 推荐布局

27

修订记录

版本号	更新内容
V1.0	发布版本

技术支持

可通过邮箱或问题反馈网站向我司提交芯片产品使用的问题,并获取技术支持。

售后服务邮箱: service@loongson.cn

声明

本文档版权归龙芯中科(南京)技术有限公司所有,未经许可不得擅自实施传播等侵害版权人合法权益的行为。 本文档仅提供阶段性信息,可根据实际情况进行更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承 担任何责任。

龙芯中科(南京)技术有限公司

地址:南京市江北新区星火路19号11栋

电话(Tel): 025-58600707